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atomic scale (111) facets which make up the structure 
of the (012) plane. 

The electron microscope pictures, in addi t ion to 
confirming the orientations determined by  electron 
diffraction, gave specific da ta  on the shapes of the 
oxide growth and the par t icular  faces present. 0 n l y  
the three most densely packed faces occurred on the 
oxide. 

The authors would like to thank  Dr A. T. Gwathmey  
and Dr N. Cabrera for m a n y  helpful  discussions. This 
work was sponsored by  the Office of Naval  Research. 
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The fitting of a plane or a line to a set of points by least squares is discussed, and a convenient 
numerical method is given. 

In  the description of a crystal structure,  i t  is sometimes 
desired to fit  a least-squares plane to the positions 
found for some approximate ly  coplanar set of atoms. 
Because it seems tha t  an incorrect method is often 
used for doing this, we would like to discuss the 
problem and recommend an a l ternat ive  method tha t  
is both correct in principle and convenient in computa- 
tion. 

I t  becomes evident  tha t  the problem of the plane 
is essentially equivalent  to the problem of f inding the 
principal  plane of least inert ia  for a set of point  masses 
and tha t  the problem of the best line is s imilar ly 
equivalent  to the very  closely related problem of the 
least axis of inertia.  The discussion therefore natur-  
al ly covers line as well as plane and essentially re- 
capitulates parts  of a classical mechanical  theory in 
deriving what  is special to the present application. 
We first formulate  the problem of the plane and 
present  the recommended al ternat ive  method of solu- 
tion, including a detailed numerical  example,  then  
discuss the prevalent  incorrect method as well as 
various special cases, and f inal ly consider the problem 
of the line and give a convenient method for handl ing it. 

* Contribution No. 2287 from the Gates and Crellin 
Laboratories. 

We find it  convenient to use both ordinary vector 
notation, as in equations (1), (2), and (3), and mat r ix  
notation, as in equat ion (11), sometimes side by  side. 
We also use two summat ion  conventions: the Gaussian 
bracket  [ ], to express summat ion  over a set of points 
(cf., e.g., Whi t t aker  & Robinson, 1940), and the 
convention of dropping the operator Z whenever  it  
applies to repeated alphabetic  indices. Definit ions we 
often express as identities. 

T h e  l e a s t - s q u a r e s  p l a n e  

W h a t  is desired is to f ind the plane tha t  minimizes 
S =- ZkwkD~ =~ [wD2], the weighted sum of squares of 
distances D~ of points k from the plane sought. These 
points are defined by the vectors 

r - xlal  +x2a2+xSas -= x ' a , .  (1) 

The plane is defined by its uni t  normal  

m =- mlb l+m2b2+mab 3 - m,b* (2) 

and by the origin-to-plane distance d, whereupon the 
distance from the plane to a point  is 

m . r - d  - m ~ x i - d  (3) 
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a n d  the  weighted*  sum of squares  of res iduals  is 

S -  [wD 2] -- [ w ( m i x ~ - d ) 2 ] .  (4) 

The condi t ion t h a t  m be a un i t  vec tor  is expressed  by  

m .  m = b ~ . bSm~ms - g~Sm~ms = 1 . (5) 

To m a k e  S s t a t i o n a r y  sub jec t  to this  condit ion,  one 
in t roduces  a L a g r a n g e  mul t ip l ie r  4 a n d  wri tes  a com- 
posi te  express ion 

.F = [w (m~x~ - d) 2] - 4giSmim~ , (6) 

which leads d i rec t ly  to the  no rma l  equat ions ,  

1 ~F 
2 ~mi [wx~(msxS -d ) ] -4g~Sm¢  = 0, i = 1, 2, 3 (7) 

1 ~F 
2 ~d [ w ( m c x S - d ) ]  = 0 .  (8) 

The las t  equa t ion  is solved by  

d = [wmsxS]/[w] = m s x S ,  with  x J - [ w x S ] / [ w ] ,  (9) 

which shows t h a t  t r a n s f o r m a t i o n  to the  coordinates  

X~ = x , - x ,  el iminates  d and  reduces  the  th ree  equa-  
t ions (7) to the  form 

[wX~XS]ms - AiSms = 4g~Sms, i = 1, 2, 3 .  (10) 

In matrix notation this corresponds to 

A m  = ~ g m ,  (11) 

while (4) and  (5) become 

S - r~Am; ff~gm = 1 ,  (12) 

where  m a n d  I5 are  r ep resen ta t ions  of the  vec tor  m 
b y  co lumn a n d  row matr ices ,  respect ively .  E q u a t i o n  
(11) is an  e igenvalue  equa t ion ,  sat isf ied only if 4 is 
an  e igenvalue  4(0; for a g iven 4 (o the  m a t r i x  solut ion 
m of this  equa t ion  is an  e igenvector  m (/). The fami l ia r  
d e t e r m i n a n t a l  equa t ion  ] A - ~ g l  = 0, a cubic equa t ion  
in 4, leads to the  th ree  roots  4 (1) < 4 (2) < 4 (3), corre- 
sponding  to the  best plane,  an  i n t e rmed ia t e  plane,  a n d  
a 'wors t '  p lane,  all a t  r igh t  angles to one ano ther .  
All these  p lanes  go t h r o u g h  the  centroid,  and,  as will 
be seen later ,  the  'wors t '  p lane  is pe rpend icu la r  to the  
best  line t h a t  can be d r a w n  t h r o u g h  the  points .  E x c e p t  

* If the weights for different points have ratios Wk/Wk, 
invariant to the orientation of the desired plane, the weights 
may be taken as constants, even though the relevant prescrip- 
tion w oc 1/a~ (ai for any point is the standard error of the 
component of r perpendicular to the plane) might seem to 
suggest otherwise if a~ is anisotropic. If the ratios are not 
invariant, on the other hand, the weights have to be adjusted 
to conform to the actual orientation of the plane, perhaps in 
successive stages of approximation. Our general discussion 
presumes constant ratios; it could be applied, however, to the 
successive stages of the refinement for the non-constant case. 

Of course, it may be desired to use least squares for finding 
a best plane in a purely formal sense (without regard to the 
accuracies of the rk), taking, for example, unit weights. 

for the  subs t i tu t ion  of weights  for masses  the  s i tua t ion  
is indeed  t h a t  of t he  pr incipal  p lanes  of iner t i a  for the  
same set of a toms.  The or ien ta t iona l  p a r t  of the  t r ans -  
f o rma t ion  has  recen t ly  been discussed for the  general  
case of tr iclinic axes  using the  t e m p e r a t u r e  fac tor  as 
an  example  (Waser ,  1955). 

The mean ing  of the  e igenvalue  4 (1) becomes clear if 
the  equa t ion  A m  (1) = 4(1)gm O) is mul t ip l ied  f rom the  
left  by  IX]. (1)" 

~ ( : ) A m  0) = 4(1) lx I (1)g ln  (1) ~-- 4 (1) . ( 1 3 )  

Since the  left  side also equals  S, 4 (1) is the  m i n i m u m  
va lue  of the  sum of res iduals ;  in par t i cu la r ,  exac t  
cop lana r i ty  corresponds  to 4 (1) = 0. The  e igenvalues  
4 (2) and  4 (3) h a v e  analogous  meanings .  I t  will be no t ed  
t h a t  a p p r o x i m a t e  col l inear i ty  corresponds  to 
4 (1) ~ 4 (2) < 4 (3), a n d  exac t  col l inear i ty  to 4 (1) = 4 (2) = 0. 

I terat ive  n u m e r i c a l  s o l u t i o n  

While  the  s t a n d a r d  e igenvalue  p rob lem involves  the  
solut ion of a cubic d e t e r m i n a n t a l  equa t ion  in add i t ion  
to a set of s imul taneous  l inear  equa t ions  for the  
componen t s  of the  e igenvectors ,  the  p resen t  p rob lem 
of the  plane,  by  v i r tue  of the  smal lness  of the  crucial  
e igenvalue  4 (1) (i.e., by  v i r tue  of the  goodness  of f i t  
of the  points  to the  plane,  re la t ive  to the i r  ex tens ion  
in the  plane) ,  can be s imply  a n d  effect ively hand led  
by  i t e ra t ion  (cf., e.g., F raze r ,  D u n c a n  & Collar, 1938). 
The  basic re la t ion  for  this  is 

A 

B m -  A g m  = ( [ A [ / 4 ) m .  (14) 

I t  is ob ta ined  by  mul t ip ly ing  (11) f rom the  left  wi th  

(the ad jo in t  m a t r i x  of A ) ,  using the  p r o p e r t y  A A =  

]A]I, and  wri t ing  ]3 for Ag. I t  follows f rom this  re la t ion  
t h a t  a lmos t  a n y  ini t ia l ly  chosen vec tor  m(0) is t r ans -  
fo rmed  into  a mul t ip le  of the  e igenvector  m (1) by  a 
suff icient  n u m b e r  of r epea t ed  mul t ip l ica t ions  by  the  
m a t r i x  ]3" we f irs t  express  m(0 ) in t e rms  of the  eigen- 
vectors m (i), 

m(0 ) = clm(1) + c2m(2) + c3m (a) , (l 5) 

a n d  then  mu l t i p ly  r epea t ed ly  wi th  B to ob ta in  

mo) - Bin(0) = cl ([ A]/4(1))m (0 
+ c 2 ([ A[/4(2))m (2) + c a (] n i/4(3))m (3) 

o • • • • 

m@) - Bm@_l) = c 1 (I A]/4(1)F m°)  
+ c2(r A I/4 (2))'m (2) + c3([ A ]/4(3))~m (3> 

cl (I A I/4(1)) "m°)  • 

Fo r  a typ ica l  'good '  p lane  4(1)/), (2) a n d  40)/4 (3) will 
p r o b a b l y  be of the  order  of 10 -4 (average  d i s tance  of 
points  f rom p lane  0.01 A, ave rage  d i s tance  of points  
f rom centroid  1 A). A lmos t  a n y  m(n) will t hen  converge 
to c 1 (IAl/4a))m 0) wi th  r a t h e r  high precision in one 
step,  so t h a t  a second mul t ip l ica t ion  by  B is necessary  
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only to verify and refine the convergence and to 
evaluate ]AI/~t (0. The exceptional case would be the 
unfortunate one of c~ ~ 0, whereupon m(n ) 
c~(IAI/)~(1))nm (1), though still a true equation, no 
longer provides an approximation to m (~), being es- 
sentially of the form 0 ~ 0 .m (1). 

Therefore, consider as choice for m(0 ) one of the 
three vectors 

, and . 

The vector Bm(0) is then a column vector of B. Due 
to the rapid convergence just envisioned, this column 
vector will be almost parallel to m (1), which is to say 
the column vectors of B are themselves almost parallel. 
The exceptional case in which m(0 )is almost orthogonal 
to m (1) and corresponds to a very small value of c 1 
can then be quickly recognized, since it corresponds 
to a very small column vector of B: the expansion 
of this vector by equation (15) will have all three 
coefficients small because they contain as factors 
cl, 1/~t (e), and 1/~ (a), respectively. The rule thus 
emerges tha t  a uniformly good choice of Bm(0 ) is the 
largest column vector of B. 

If the fit of points to plane is perfect, Smi,. and thus 
/t (1) are zero, so tha t  ]A] is zero also, being the constant 
term 20)~(2)~ (3) in the foregoing determinantal  equa- 
tion. This has the consequence tha t  the column vectors 

of A become strictly proportional to one another 
(cf., e.g., l~azer,  Duncan & Collar,^ 1938), which is to 
say tha t  A~ takes the form A~-= r~j. (For later 
purposes we mention tha t  any matr ix of rank 1 shows 
this behavior, and inversely.) This property is trans- 
ferred to B(B~ -- A~jgJ k -- r~sjg~ ~ =- rtt  ~) and has the 
further consequence tha t  m (~) is strictly proportional 
to the column vectors tkr of B. Indeed, m~ 0 = 
()I(I)/IA ])B~m(k 0 = const, r~t~m~ = const, ri. We note tha t  
even in the case just considered the quant i ty  IAI/~ (1) 
in equation (14) remains finite, being equal to X(2)~(a). 
However, if the points are precise~ collinear, IAI/X (0 
is equal to zero, and, moreover, A is a null matrix. 

In  practice one evaluates the coordinates of the 
centroid x i = [wxi]/[w] ; forms A = ([wx%~]-  [wxi]xi), 

the adjoint matr ix A (which has as ij element ( - 1 )  i+j 

times the subdeterminant associated with the j l  

element in A), AA = ]AII  (to determine^ ]A[ and 
check the computation of A), and B = Ag; chooses 
the largest column vector of B for m(~)= Bin(0); 
multiplies with B until the ratios m~(n)/mi(n-~), i = 
1, 2, 3, are equal to one another and have thus attained 
their limiting value [AI/~(1); normalizes m by n~gm = 1 ; 
and evaluates d = m~x~ and the residuals m ~ x ~ - d .  
These must  stand reasonable scrutiny and have 
weighted sum of squares equal to ~(1). 

N u m e r i c a l  e x a m p l e  

A practical example (the benzene ring in the phenyl 
cyclobutenedione structure at  its present stage of 
refinement; C. Wong, 1~. E. Marsh & V. Schomaker, 
to be published) will serve to illustrate some of the 
foregoing considerations as well as show tha t  the 
recommended procedure is actually quite simple. 
Table 1 reproduces all tha t  had to be recorded--  
except for familiar steps leading to the b i when the 
work was done on a desk calculator. 

Discussion 

While the foregoing approach is based on the equation 
of a plane in the form m~x i - - d  (cf. equations (1) 
to (4)), this equation can be written also in its 'normal'  
form 

(mi /d)x  ~ = n i x  ~ = 1 , 

where the ni are independent and where g~¢n~n¢ = 1/d 2. 
(It is already apparent tha t  difficulties will arise when 
d approaches zero.) 

If one now asks for the 'best '  values for the n~ to 
fit a set of points rk, one may be led to the criterion 

[w (n~x i -  1)9] = rain. , 

which corresponds to the minimization of S / d  2 -  
[w(D/d)  ~] rather than of S. If d is large compared 
with the deviations of the points from the plane, the 
resulting plane will be close to the one obtained by 
minimizing S; however, if d is small (or the points 
badly non-planar, or the lateral distance of the origin 
from the centroid relatively great), the resulting plane 
may be significantly in error. The origin effectively 
repels the plane with a force depending inversely on 
the origin-to-plane distance, causing the plane to 
translate and (in general) rotate away from its proper 
position. Approximate expressions for the magnitudes 
of these effects will now be derived. 

While minimization of S / d  2 leads directly to the 
normal equations 

[wxixJ]nj = [wxi], i = 1, 2, 3 (16) 

or in matrix notation 

an = $ ,  (17) 

the problem will be treated differently, for purposes 
of comparison. If the conditions for S / d  2 stat ionary 
subject to g~m~m~ = 1 are written out in analogy to 
(7) and (8) with Lagrange mult ipl ier /4  the equations 

A m - t t d 2 g m  = (S /d )~  

d = m~x i + S~ [wJd 

can be readily obtained. These equations can be solved 
for our case of interest as a perturbation problem by 
regarding (S/d)-x as a small perturbation of the 
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Table  1. N u m e r i c a l  example  o f  least-square p lane  

Unit weights. Data in italics, results in bold-face 

Atom x ~ x e x a D (A) D* (A) 

1 0.1780 0.5356 0.3731 0.0030 0.0051 
2 0.1389 0.6645 0.3177 0.0034 0.0048 
3 0.1670 0.7929 0.3765 --0.0049 --0.0054 
4 0"2370 0"7882 0.4918 0"0000 --0.0017 
5 0.2786 0.6594 0.5498 0.0062 0.0049 
6 0.2447 0.5311 0.4867 --0.0079 --0.0070 

[ ]  1-2442 3.9717 2.5956 --0.0002 0-0007 
x --~ 0.2073§ 0.6619½ 0"4326 - -  - -  

100A 109AA 
1.4525653 --0.3075630 2.4001280 7.973 0.000 

--0.3075630 6.6186015 --0.0025310 0.000 7"975 
2.4001280 --0.0025310 4.0056760 0.001 0.001 

a l =  7.000 A 
a 2 =  9.287 A 
a a = 12"340 A 

= l O 3 . 3 1  ° 

b 1 ----0"14680 A -1 
b 2 = 0"10768 A -1 
b 3 =0.08327 A -1 
b ~ s i n ~ = 0 . 0 1 9 1 7 A  -~ 

0.002 
0.000 
7.973 

103~ 10g 
2.6511967 0.1225923 --1.5884712 0.21550 0 
0.1225923 0.0057892 --0.0734514 0 0.11595 

--1.5884712 --0.0734514 0.9519356 0.02814 0 

0.02814 
0 

0.06934 

105B 105m(0) 101°m(1) 
5.2663 0.1421 --0.3554 5.2663 28.890 
0.2435 0.0067 --0.0164 0-2435 1.336 

--3.1553 --0.0852 0.2131 --3.1553 --17.310 

m(1) 
6.9518 
0.3215 

--4.1653 

5.4858 ;t(1) = 7.97 × 10-9/5.49 × 10 -5 
105mio)/mi(o) 5.4867 = 1.45 × 10 -a 

5.4858 S (from D, above) = 1.45 × 10 -a 

[ 5.7387 1029r~0)gm(0---- 17.270; (17.270)-½ ---- 0.24063 
10ngm(1) ~ 0.1549 

[--0.3873 d = r~(0~ = --0.1475 A 

* For plane obtained by the incorrect method; see Discussion. 

p rev ious  e igenva lue  e q u a t i o n  A m - ~ g m  = 0. W e  wr i te  
m -- m(1)~-m ' a n d / ~ d  2 = ~(~)+~' a n d  f ind  the  fol lowing 
f i r s t -order  resu l t s  of in te res t .  The  twis t  of the  p lane  
f rom i ts  correct  o r i en t a t i on  is descr ibed  b y  

S S 
m '  = ~(e)~ d ()(2)_)~(1)) m(2) -4- ~(3)~ d ()(3)_ ~(1)) m(3) 

~20) ~2(~) m~3) 
~ '  I~(2) d ~  m(2) ~- ~(3) d ~  ' 

while  t he  t r a n s l a t i o n  of t he  p lane  is descr ibed b y  

d' ---- d -  d c°rrect = r~' x + S/[w]d 

(~(2)g)2;t(1)+(~a(3)~)~.;t(~) D 2 

~ d~(2) d;t(a) + ~ ,  

where  in  the  las t  l ine we h a v e  w r i t t e n  D 2, t he  m e a n  
squa red  res idual ,  for S/[w] .  I n  t e rms  of the  dev ia t i on  
of a g iven  po in t  f rom the  plane,  t he  difference be tween  
the  two m e t h o d s  is g iven  b y  

D '  =- D-Doorreot 

= I h ~ -  d -  ( ~ ( i ) x -  dcorrect) = ~ ' X -  S~ [wJd 

~ ( D  D 2 
1~ (2) ~)~(1) lq].(2)X -~- ~(3) 1~1 (3)X _ _  _ _  

d~ d~ d" 

A l t e r n a t i v e  express ions  w i t h o u t  expl ic i t  reference to  
2 (2), 2 (3), m (2), a n d  m (3) can  also be found ;  t he  k e y  
express ion  is 

m '  = Sd  -1(1 -m(1)n~(1)g)A-1x. 

I t  will  be easy to  see t h a t  in  a n y  p rac t i ca l  case t he  
m e t h o d  invo lv ing  (16) or (17) m a y  be s a t i s f ac to ry  or 

no t  depend ing  on the  va lues  of -x/d, D2/d,  ~to)/;t(2), a n d  
~(1)/;t(a), as well  as t h e  cr i ter ia  to  be used  for j u d g i n g  
the  r e su l t ing  errors m ' ,  d' ,  a n d  D' .  

W h e n  the  benzene  r ing  of p h e n y l  cyc lobu tened ione  
was t r e a t e d  b y  the  incor rec t  me thod ,  t he  f i rs t  d i f f icu l ty  
was in  solving equa t ions  (17)- t h e y  are b a d l y  ill- 
condi t ioned,  a n d  winn ing  an  a d e q u a t e  so lu t ion  of t h e m  
was m u c h  more  t roub lesome  t h a n  ca r ry ing  out  t he  full 
r e c o m m e n d e d  procedure .  Moreover ,  t he  p lane  is indeed  
tw i s t ed  a n d  displaced,  as is shown  b y  the  origin-to-  
p lane  d is tance ,  0.1588 A_, a n d  the  D values ,  which  are 
g iven  in  t he  Table .  Of course, as seems to h a v e  been  
b e l a t e d l y  d iscovered  several  t imes  before, t he  origin 
can  be m o v e d  if t roub le  t h r e a t e n s - - m o v e d  a w a y  f rom 
the  p lane  a n d  t o w a r d  the  no rma l  pass ing  t h r o u g h  the  
c e n t r o i d - - a n d  our  a p p r o x i m a t e  re la t ions  could serve 
as a guide  in  th is  respect .  B u t  the re  would  a lways  be 
some res idual  error,  and,  for all  t h a t  we u n d e r s t a n d  
of it ,  t he  i l l -condi t ion ing  would  r e m a i n  in  doub t .  
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A final point  about  the plane is tha t ,  if Cartesian 
coordinates (for which g is the unit  matr ix)  have  

a l ready  been introduced, our B will coalesce with A .  
The essence of the work is then  expressed by the  
equat ion Am(0)~  const, m (1) with the largest  column 
vector  of A as the  logical choice for m(0). 

T h e  l e a s t - s q u a r e s  l i n e  

The problem of the best plane is closely related to the  
problem of the  best line through a set of points. I t  
m a y  be obvious, f rom the close analogy to the problem 
of the least axis of inert ia or otherwise, t ha t  this line 
passes through the  centroid and is perpendicular  to 
wha t  we have  called the worst  plane. Nevertheless,  
the  following formal  demonst ra t ion  m a y  not  be out  
of place. 

We first derive an expression for the distance of the 
point  described by  the  vector  x = xia~ from a line 
which passes through the point  x 0 = x~a~ and is 
parallel to the  unit  vector m = m~b~. This line can 
be described by the equat ion 

r = x 0 + t m ,  (18) 

where t is a pa ramete r  which can assume all real 
values. The square of the distance D from point  to line 
is equal to the square of the distance Ix 0 -  x] diminished 
by  the  square of the projection of this distance on the 
line (18)" 

D 2 = ( X o - X ) ~ - ( m .  ( x 0 - x ) )  ~ 

= (Xio-Xi)(X]o-ZJ)(g~-m~mj) , 
with g~j = a~. aj. 

I f  now a number  of points are to be f i t ted by  a best 
line, the  problem is readily pu t  in the form of finding 
the parameters  x~) and m~ which make  

S ' =  [w(xio--xi)(xio-xJ)](g~-m~m~) 

a minimum,  subject to the  auxil iary condition (5). 
We use again a Lagrange  multiplier 2 and find even- 
tua l ly  the  equations 

X~o = x'--~; [wx~xJ]mj - A~m~ = 2g~mj; 

i = 1 , 2 , 3 .  (19) 

The line sought thus  goes through the  centroid, and 
the  conditions on m are precisely those of equat ions 
(10) or (11), or also g - lAin  = 2m. The sum of the  
residuals can be expressed in the form 

S'(O = Spur g-1 A -  ~a(OAm(O = _Y 2 a ) -  2 (i) ( > O). 
k 

I t  is clear t ha t  the s i tuat ion concerning the eigen- 
values and eigenvectors is just  the  opposite of the  one 
for the plane. The largest  eigenvalue, 2(3), is associated 
with an absolute min imum of S ' ;  its eigenvector m (3) 
is parallel to the best line (and perpendicular  to the  
'worst '  plane) while the other  two eigenvectors corre- 
spond to an ' in termediate '  and a 'worst '  line (perpen- 
dicular to the  ' in termedia te '  and the best plane, 
respectively). One can speak of an effective fit  of a 
line to the points only when 2(3) >> 2 (e), 2 (1). When 
looking for the best line to fit a set of points one will 
thus  conveniently use the mat r ix  g - l A  ra the r  t han  
the  mat r ix  B employed previously, which is essentially 
its inverse. 

For  the case of a perfect fit  [A-2g [  = 0 has a double 
root zero, the  double degeneracy corresponding to the  
infinitely m a n y  planes passing through the  line. 
Because of this double degeneracy, A and thus  g - l A  
have  ranl~ 1. The column vectors of g - l A  are there- 
fore parallel to one another  and to m (3). 

The equat ion of the line sought is 

r = ~ + t m  (3), 

since it passes through the centroid ~, or, by  vir tue 
of b ~ = g~a~, 

• ---^(3) j~.  , . x ~ = x ~ + t m ]  g , i =  1 2 , 3  
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