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atomic scale (111) facets which make up the structure
of the (012) plane.

The electron microscope pictures, in addition to
confirming the orientations determined by electron
diffraction, gave specific data on the shapes of the
oxide growth and the particular faces present. Only
the three most densely packed faces occurred on the
oxide.

The authors would like to thank Dr A. T. Gwathmey
and Dr N. Cabrera for many helpful discussions. This
work was sponsored by the Office of Naval Research.

References
BraprLEY, D. E. (1954). J. Inst. Met. 83, 35.

Acta Cryst. (1959). 12, 600

EPITAXTAL RELATIONSHIPS OF CUPROUS OXIDE

Donvy-HeENavrr, O. (1910). Bull. Soc. Chem. Belg. 24,
56.

Evans, D. M. & WiLman, H. (1950). Proc. Phys. Soc.
A, 63, 298.

Harris, W. W,, Barr, F. L. & GwaTEMEY, A. T. (1957).
Acta Met. 5, 574.

Lawiess, K. R. & GwaTEMEY, A. T. (1956). Acta Met.
4, 153.

MEVYER, J. (1908). Bull. Soc. Chem. Belg. 22, 259,

Mirtrer, G. T., Jr. & Lawwress, K. R. J. Electrochem.
Soc. (In press).

PasrrLey, D. W. (1956). Advances in Physics, 5, 173.

TrOMSsON, G. P. (1931). Proc. Roy. Soc. Lond. A, 133, 1.

VERMA, A. R. (1953). ‘Crystal Growth and Dislocations’.
London: Butterworth Scientific Publications.

Young, F. W., Jr., CATHCART, J. V. & GWATHEMEY, A. T.
(1956). Acta Met. 4, 145.

To Fit a Plane or a Line to a Set of Points by Least Squares*

By VERNER SCHOMAKER, JURG WasER, RicHARD E. MARSH AND GUNNAR BERGMAN

Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.
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(Recetved 17 December 1957)

The fitting of a plane or a line to a set of points by least squares is discussed, and a convenient

numerical method is given.

In the description of a crystal structure, it is sometimes
desired to fit a least-squares plane to the positions
found for some approximately coplanar set of atoms.
Because it seems that an incorrect method is often
used for doing this, we would like to discuss the
problem and recommend an alternative method that
is both correet in principle and convenient in computa-
tion.

It becomes evident that the problem of the plane
is essentially equivalent to the problem of finding the
principal plane of least inertia for a set of point masses
and that the problem of the best line is similarly
equivalent to the very closely related problem of the
least axis of inertia. The discussion therefore natur-
ally covers line as well as plane and essentially re-
capitulates parts of a classical mechanical theory in
deriving what is special to the present application.
We first formulate the problem of the plane and
present the recommended alternative method of solu-
tion, including a detailed numerical example, then
discuss the prevalent incorrect method as well as
various special cases, and finally consider the problem
of the line and give a convenient method for handling it.

* Contribution No. 2287 from the Gates and Crellin
Laboratories.

We find it convenient to use both ordinary vector
notation, as in equations (1), (2), and (3), and matrix
notation, as in equation (11), sometimes side by side.
We also use two summation conventions: the Gaussian
bracket [ ], to express summation over a set of points
(cf., e.g., Whittaker & Robinson, 1940), and the
convention of dropping the operator 2 whenever it
applies to repeated alphabetic indices. Definitions we
often express as identities.

The least-squares plane

What is desired is to find the plane that minimizes
S = 2D} = [wD?], the weighted sum of squares of
distances Dy of points k from the plane sought. These

points are defined by the vectors
r = rla, +2%,+2%a; = xfa; . (1)
The plane is defined by its unit normal
m = mbl+m,b2+msb3 = m;bi (2)

and by the origin-to-plane distance d, whereupon the
distance from the plane to a point is

m.r—d = myri—d 3
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and the weighted* sum of squares of residuals is
S = [wD?] = [w(mixi—d)?] . 4)
The condition that m be a unit vector is expressed by
m.m = bi.bimm; = g¥¥mm; = 1. (5)

To make § stationary subject to this condition, one
introduces a Lagrange multiplier 4 and writes a com-
posite expression

F = [w(mi—d)2]— Agiimmy , (6)
which leads directly to the normal equations,
1oF A X y .
EF e [wat(ma? —d)]—Agitm; = 0, ¢ =1,2,3 (7)
1 oF .
T3 [w(mi—d)] = 0. (8)

The last equation is solved by
d = [wm)/[w] = mgad , with = [wai)/[w], (9)

which shows that transformation to the coordinates

Xi = x;—a; eliminates d and reduces the three equa-
tions (7) to the form

[wXiXilm; = Atim; = Agiim;, ©=1,2,3. (10)
In matrix notation this corresponds to
Am = Jgm (11)
while (4) and (5) become
S =mAm; mgm =1, (12)

where m and m are representations of the vector m
by column and row matrices, respectively. Equation
(11) is an eigenvalue equation, satisfied only if 4 is
an eigenvalue A®¥; for a given A® the matrix solution
m of this equation is an eigenvector m®. The familiar
determinantal equation |A—Ag| = 0, a cubic equation
in A, leads to the three roots AV < A® < A®, corre-
sponding to the best plane, an intermediate plane, and
a ‘worst’ plane, all at right angles to one another.
All these planes go through the centroid, and, as will
be seen later, the ‘worst’ plane is perpendicular to the
best line that can be drawn through the points. Except

* If the weights for different points have ratios wyfwy
invariant to the orientation of the desired plane, the weights
may be taken as constants, even though the relevant prescrip-
tion w oc 1fo§ (o) for any point is the standard error of the
component of r perpendicular to the plane) might seem to
suggest otherwise if ¢} is anisotropic. If the ratios are not
invariant, on the other hand, the weights have to be adjusted
to conform to the actual orientation of the plane, perhaps in
successive stages of approximation. Our general discussion
presumes constant ratios; it could be applied, however, to the
successive stages of the refinement for the non-constant case.

Of course, it may be desired to use least squares for finding
a best plane in a purely formal sense (without regard to the
accuracies of the ry), taking, for example, unit weights.
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for the substitution of weights for masses the situation
is indeed that of the principal planes of inertia for the
same set of atoms. The orientational part of the trans-
formation has recently been discussed for the general
case of triclinic axes using the temperature factor as
an example (Waser, 1955).

The meaning of the eigenvalue A becomes clear if
the equation Am® = A®Pgm® is multiplied from the
left by m®:

AOAM® = JORMgm® — A0 (13)
Since the left side also equals S, AV is the minimum
value of the sum of residuals; in particular, exact
coplanarity corresponds to A® = 0. The eigenvalues
A® and A® have analogous meanings. It will be noted
that approximate collinearity corresponds to
IV )@ < 2®, and exact collinearity to A= 1®= 0,

Iterative numerical solution

While the standard eigenvalue problem involves the
solution of a cubic determinantal equation in addition
to a set of simultaneous linear equations for the
components of the eigenvectors, the present problem
of the plane, by virtue of the smallness of the crucial
eigenvalue AV (i.e., by virtue of the goodness of fit
of the points to the plane, relative to their extension
in the plane), can be simply and effectively handled
by iteration (cf., e.g., Frazer, Duncan & Collar, 1938).
The basic relation for this is

Bm = Agm = (J4|/A)m. (14)

It is obtained by multiplying (11) from the left with A
(the adjoint matrix of A), using the property AA =
|AJI, and writing B for Ag. It follows from this relation
that almost any initially chosen vector my, is trans-
formed into a multiple of the eigenvector m® by a
sufficient number of repeated multiplications by the
matrix B: we first express m, in terms of the eigen-
vectors m®,

mg, = ¢m®+c,m® 4¢m® (15)
and then multiply repeatedly with B to obtain

mg, = Bmg, = ¢, (|Al/A)m®
+eo(|Al/AP)mM® +¢5 (| A|/AP)m®
myy = Bm,_;, = ¢; (|A]/AD)"m®
+¢,(JAl/A®)"m® ¢, (|A]/A®)rm®
a ¢y (JA]/AD)m® |

For a typical ‘good’ plane AV/A® and AV/A® will
probably be of the order of 10— (average distance of
points from plane 0-01 A, average distance of points
from centroid 1 A). Almost any mq will then converge
to ¢, (JA[/AP)m® with rather high precision in one
step, so that a second multiplication by B is necessary
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only to verify and refine the convergence and to
evaluate |A|/A®. The exceptional case would be the
unfortunate one of ¢; &~ 0, whereupon mg, ~
¢, (|A]/AD"m®, though still a true equation, no
longer provides an approximation to m®, being es-
sentially of the form 0 ~ 0.m®.
Therefore, consider as choice for my, one of the

three vectors
1 0 0
0},{1) and [O].
(1) 0 1

The vector Bmy, is then a column vector of B. Due
to the rapid convergence just envisioned, this column
vector will be almost parallel to m™, which is to say
the column vectors of B are themselves almost parallel.
The exceptional case in which mg,is almost orthogonal
to m® and corresponds to a very small value of ¢,
can then be quickly recognized, since it corresponds
to a very small column vector of B: the expansion
of this vector by equation (15) will have all three
coefficients small because they contain as factors
¢, 1/2®, and 1/A®, respectively. The rule thus
emerges that a uniformly good choice of Bm, is the
largest column vector of B.

If the fit of points to plane is perfect, S,;, and thus
A® are zero, so that |A] is zero also, being the constant
term ADA®A® in the foregoing determinantal equa-
tion.A This has the consequence that the column vectors

of A become strictly proportional to one another
(cf., e.g., Frazer Duncan & Collar 1938), which is to
say that A” takes the form A” = r;857. (For later
purposes we mention that any matrix of rank 1 shows
this behavior, and 1nverse1y ) This property is trans-
ferred to B(Bf= Augﬂ‘ r;s;gﬂc— rit¥) and has the
further consequence that m® is strictly proportional
to the column vectors tir of B. Indeed, m{V =
(A®/ |A|)B"m D — const. r;tkmy, = const. ;. We note that
even in the case just considered the quantity |A[/A®
in equation (14) remains finite, being equal to A®@2®.
However, if the points are precisely collinear, [A[/AD
is equal to zero, and, moreover, A is a null matrix.

In practice one evaluates the coordinates of the
centroid z* = [wx’]/[w] forms A = ([wa'z’]—[wz']2?),
the adjoint matrix A (which has as ij element (— 1)1'H
times the subdeterminant associated with the ji
element in A), AA = ]A|IA (to determn}e [A] and
check the computation of A), and B = Ag; chooses
the largest column vector of B for mg, = Bm(o),
multiplies with B until the ratios m;q;/mu_1), ¢ =
1, 2, 3, are equal to one another and have thus attained
their limiting value |A|/A""; normalizes m by mgm = 1;
and evaluates d = myzi and the residuals mjxi—d.
These must stand reasonable scrutiny and have
weighted sum of squares equal to A,

TO FIT A PLANE OR A LINE TO A SET OF POINTS BY LEAST SQUARES

Numerical example

A practical example (the benzene ring in the phenyl
cyclobutenedione structure at its present stage of
refinement; C. Wong, R. E. Marsh & V. Schomaker,
to be published) will serve to illustrate some of the
foregoing considerations as well as show that the
recommended procedure is actually quite simple.
Table 1 reproduces all that had to be recorded—
except for familiar steps leading to the b*—when the
work was done on a desk calculator.

Discussion

While the foregoing approach is based on the equation
of a plane in the form m.xt = d (cf. equations (1)
0 (4)), this equation can be written also in its ‘normal’
form
(mifd)xt = nxt = 1,

where the n; are independent and where giinn; = 1/d2.
(It is already apparent that difficulties will arise when
d approaches zero.)

If one now asks for the ‘best’ values for the n; to
fit a set of points rx, one may be led to the criterion
[w(nxt—1)%] = min. ,
which corresponds to the minimization of S/d? =
[w(D[d)?] rather than of S. If d is large compared
with the deviations of the points from the plane, the
resulting plane will be close to the one obtained by
minimizing §; however, if d is small (or the points
badly non-planar, or the lateral distance of the origin
from the centroid relatively great), the resulting plane
may be significantly in error. The origin effectively
repels the plane with a force depending inversely on
the origin-to-plane distance, causing the plane to
translate and (in general) rotate away from its proper
position. Approximate expressions for the magnitudes

of these effects will now be derived.
While minimization of S/d? leads directly to the
normal equations

[wrizilng = [wx;], 2=1,2,3 (16)

or in matrix notation
on = &, (17)

the problem will be treated differently, for purposes
of comparison. If the conditions for S/d? stationary
subject to gi¥m;m; = 1 are written out in analogy to
(7) and (8) with Lagrange multiplier u, the equations

Am—ud?gm = (S/d)x
d = mxi+8/[w)d
can be readily obtained. These equations can be solved

for our case of interest as a perturbation problem by
regarding (S/d)x as a small perturbation of the
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Table 1. Numerical example of least-square plane

Unit weights. Data in italics, results in bold-face
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Atom xt x? 23 D (A) D* (A) a, = 7000 A
1 0-1780 0-5356 0-3731 0-0030 0-0051 a, = 9-287 A
2 0-1389 0-6645 0-3177 0-0034 0-0048 a, = 12:340 A
3 0-1670 07929 0-3765 —0-0049 —0-0054 = 103-31°
4 0-2370 0-7882 04918 0-0000 —0-0017 b1 = 0-14680 A1
5 0-2786 0-6594 0-5498 0-0062 0-0049 b2 = 0-10768 A—1
6 0-2447 0-5311 0-4867 —0-0079 —0-0070 5 = 0-08327 A1
[1 1-2442 3-9717 2-5956 —0-0002 0-0007 b3 sin f = 0-01917 A-1
zt 0-2073% 0-66193 0-4326 — —
100A 10°AA
1-4525653 —0-3075630 24001280 7.973 0-000 0-002
—0-3075630 6-6186015 —0-0025310 0-000 7-975 0-000
2:4001280 —0-0025310 4-0056760 0-001 0-001 7-973
10%A 10g
2:6511967 0-1225923 —1-5884712 0-21550 0 0-02814
0-1225923 0-0057892 —0-0734514 0 011595 0
—1-5884712 —0-0734514 0-9519356 0-02814 0 0-06934
10°B 105mg) 10¥m,) m(®)
5-2663 0-1421 —0-3554 5-2663 28-890 6-9518
0-2435 0-0067 —0-0164 0-2435 1-336 0-3215
—3-1553 —0-0852 0-2131 —3-1553 —17-310 —4-1653
5-4858 A = 7.97 x 10~9/5-49 x 10~5
105m(ay/mio) { 5-4867 = 1-45x 104
5-4858 S (from D, above) = 1-45x 10—
5-7387 102 pgmey = 17-270; (17-270)—% = 0-24063
10t gmgy { 0-1549
—0-3873 d=mWx = —0-1475 A

* For plane obtained by the incorrect method; see Discussion.

previous eigenvalue equation Am—Agm = 0. We write
m = m®+m’ and ud? = A+ 1’ and find the following
first-order results of interest. The twist of the plane
from its correct orientation is described by

< S
@ A ————m®
m'--m Xd(2‘3)—l(l>)m

o8
m= m(z)xdwm_ M)

XA

Am@Z Mm@ im®Tl _ m®
A m 7 m + m dl@m R

®

while the translation of the plane is described by
d' = d—-do™ = m'x+8/[w]d

mMPERAD  (m®x)2AD  DF
@ am g

~

where in the last line we have written D—z, the mean
squared residual, for S/[w]. In terms of the deviation
of a given point from the plane, the difference between
the two methods is given by

D" = D—~Dqyrreet
=mr—d— (Ih(l)x_dcorrect) = ﬁl’X_S/ [w]d

xAO xAD D?
A~m® I m®OX 4 _m®xX
M gy X+ ok X 7

Alternative expressions without explicit reference to
A®,2® m®, and m® can also be found; the key
expression is

m' = Sd-1(1 -mOmMg)4-1% ,

It will be easy to see that in any practical case the
method involving (16) or (17) may be satisfactory or
not depending on the values of x/d, D?/d, AD/i®, and
AD/A®, as well as the criteria to be used for judging
the resulting errors m’, d’, and D’.

When the benzene ring of phenyl cyclobutenedione
was treated by the incorrect method, the first difficulty
was in solving equations (17): they are badly ill-
conditioned, and winning an adequate solution of them
was much more troublesome than carrying out the full
recommended procedure. Moreover, the plane is indeed
twisted and displaced, as is shown by the origin-to-
plane distance, 0-1588 A, and the D values, which are
given in the Table. Of course, as seems to have been
belatedly discovered several times before, the origin
can be moved if trouble threatens—moved away from
the plane and toward the normal passing through the
centroid—and our approximate relations could serve
as a guide in this respect. But there would always be
some residual error, and, for all that we understand
of it, the ill-conditioning would remain in doubt.
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A final point about the plane is that, if Cartesian
coordinates (for which g is the unit matrix) haye
already been introduced, our B will coalesce with A.
The essence of the work is then expressed by the
equation Amg) A+ const. m® with the largest column
vector of A as the logical choice for my.

The least-squares line

The problem of the best plane is closely related to the
problem of the best line through a set of points. It
may be obvious, from the close analogy to the problem
of the least axis of inertia or otherwise, that this line
passes through the centroid and is perpendicular to
what we have called the worst plane. Nevertheless,
the following formal demonstration may not be out
of place.

We first derive an expression for the distance of the
point described by the vector x = z’a; from a line
which passes through the point x, = zfa; and is
parallel to the unit vector m = m;bé. This line can
be described by the equation

r =X,+im, (18)
where ¢ is a parameter which can assume all real
values. The square of the distance D from point to line
is equal to the square of the distance |x,—x| diminished
by the square of the projection of this distance on the
line (18):

D? = (xo—x)?—(m. (xg—X))?
= (@p—at) (xh—a") (ges—mamy) ,
with g = a;.a;.
If now a number of points are to be fitted by a best
line, the problem is readily put in the form of finding
the parameters z§ and m; which make

8 = [w(xh—a) (h—2")](gs—mim;)

a minimum, subject to the auxiliary condition (5).
We use again a Lagrange multiplier 4 and find even-
tually the equations

xd = at; [wxizilm; = Aiim; = Agiimy;

i=1,2,3. (19)
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The line sought thus goes through the centroid, and
the conditions on m are precisely those of equations
(10) or (11), or also g'Am = Am. The sum of the
residuals can be expressed in the form

8’ = Spur g 1A —m®Am® = 3 A0 -0 (> 0) ,
k

It is clear that the situation concerning the eigen-
values and eigenvectors is just the opposite of the one
for the plane. The largest eigenvalue, A®), is associated
with an absolute minimum of §’; its eigenvector m®
is parallel to the best line (and perpendicular to the
‘worst’ plane) while the other two eigenvectors corre-
spond to an ‘intermediate’ and a ‘worst’ line (perpen-
dicular to the ‘intermediate’ and the best plane,
respectively). One can speak of an effective fit of a
line to the points only when A® > A®, A0, When
looking for the best line to fit a set of points one will
thus conveniently use the matrix g—!A rather than
the matrix B employed previously, which is essentially
its inverse.

For the case of a perfect fit |A—Ag| = 0 has a double
root zero, the double degeneracy corresponding to the
infinitely many planes passing through the line.
Because of this double degeneracy, A and thus g—!A
have rank 1. The column vectors of g—!A are there-
fore parallel to one another and to m®,

The equation of the line sought is

r =r+tm®,

since it passes through the centroid r, or, by virtue
of bt = giia;,

wi = zi+tmPgit; §=1,2,3.
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